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5.2 B THE BIOT-SAVART LAW

5.2.1 W Steady Currents

Stationary charges produce electric fields that are constant in time; hence the term
electrostatics.® Steady currents produce magnetic fields that are constant in time;
the theory of steady currents is called magnetostatics.

Stationary charges = constant electric fields: electrostatics.
Steady currents = constant magnetic fields: magnetostatics.

By steady current I mean a continuous flow that has been going on forever,
without change and without charge piling up anywhere. (Some people call
them “stationary currents”; to my ear, that’s a contradiction in terms.) Formally,
electro/magnetostatics is the régime

3 9
W _o Wy (5.32)
o1 o1

at all places and all times. Of course, there’s no such thing in practice as a truly
steady current, any more than there is a tfruly stationary charge. In this sense,
both electrostatics and magnetostatics describe artificial worlds that exist only in
textbooks. However, they represent suitable approximations as long as the actual
fluctuations are remote, or gradual—in fact, for most purposes magnetostatics
applies very well to household currents, which alternate 120 times a second!

8 Actually, it is not necessary that the charges be stationary, but only that the charge density at
each point be constant. For example, the sphere in Prob. 5.6(b) produces an electrostatic field
1/4m€0(Q/r?)F, even though it is rotating, because p does not depend on 7.
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Notice that a moving point charge cannot possibly constitute a steady current.
If it’s here one instant, it’s gone the next. This may seem like a minor thing to
you, but it’s a major headache for me. I developed each topic in electrostatics
by starting out with the simple case of a point charge at rest; then I generalized
to an arbitrary charge distribution by invoking the superposition principle. This
approach is not open to us in magnetostatics because a moving point charge does
not produce a static field in the first place. We are forced to deal with extended
current distributions right from the start, and, as a result, the arguments are bound
to be more cumbersome.

When a steady current flows in a wire, its magnitude / must be the same all
along the line; otherwise, charge would be piling up somewhere, and it wouldn’t
be a steady current. More generally, since dp/dt = 0 in magnetostatics, the con-
tinuity equation (5.29) becomes

V.J=0. (5.33)

5.2.2 @ The Magnetic Field of a Steady Current

The magnetic field of a steady line current is given by the Biot-Savart law:

Mo Ix% , Mo / dl x 2
B(r)=— dll = =227 . 5.34
® 47 / 22 4 22 (5.34)

The integration is along the current path, in the direction of the flow; dl’ is an
element of length along the wire, and %, as always, is the vector from the source to
the point r (Fig. 5.17). The constant i is called the permeability of free space:’

o = 4w x 1077 N/A%. (5.35)

These units are such that B itself comes out in newtons per ampere-meter (as
required by the Lorentz force law), or teslas (T):'°

1T=1N/(A m). (5.36)

dr

FIGURE 5.17

9This is an exact number, not an empirical constant. It serves (via Eq. 5.40) to define the ampere, and
the ampere in turn defines the coulomb.

10For some reason, in this one case the cgs unit (the gauss) is more commonly used than the ST unit:
1 tesla = 10* gauss. The earth’s magnetic field is about half a gauss; a fairly strong laboratory magnetic
field is, say, 10,000 gauss.
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As the starting point for magnetostatics, the Biot-Savart law plays a role analo-
gous to Coulomb’s law in electrostatics. Indeed, the 1/2% dependence is common
to both laws.

Example 5.5. Find the magnetic field a distance s from a long straight wire
carrying a steady current / (Fig. 5.18).

Wire segment

FIGURE 5.18 FIGURE 5.19

Solution
In the diagram, (d1' x %) points out of the page, and has the magnitude

dl'sina = dl’ cosé.

Also, I’ = s tan@, so

dl’ do,
cos2 6
and s = 2cos 6, so
1 cos2 6
P )
Thus
I % (cos’6
B = Kot o8 il cos 6 dob
4 J,, 52 cos? 0
ol % ol . )
= — cosfdf = —(sinf, — sinby). (5.37)
4ms Jo, 47

Equation 5.37 gives the field of any straight segment of wire, in terms of the
initial and final angles 6, and 6, (Fig. 5.19). Of course, a finite segment by itself
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could never support a steady current (where would the charge go when it got to
the end?), but it might be a piece of some closed circuit, and Eq. 5.37 would
then represent its contribution to the total field. In the case of an infinite wire,
0y = —m/2 and 6, = /2, so we obtain

1
p— Mo

= . 5.38
21s ( )

Notice that the field is inversely proportional to the distance from the wire—
just like the electric field of an infinite line charge. In the region below the wire,
B points info the page, and in general, it “circles around” the wire, in accordance
with the right-hand rule (Fig. 5.3):

ol 2
= 4.

B=
27s

(5.39)

As an application, let’s find the force of attraction between two long, parallel
wires a distance d apart, carrying currents /; and I, (Fig. 5.20). The field at (2)
due to (1) is

1
B=M01,
2md

and it points into the page. The Lorentz force law (in the form appropriate to line
currents, Eq. 5.17) predicts a force directed towards (1), of magnitude

I
F=p (%" /dl.
2md

The rotal force, not surprisingly, is infinite, but the force per unit length is

_ ko hb

= —. 5.40
2w d ( )

If the currents are antiparallel (one up, one down), the force is repulsive—
consistent again with the qualitative observations in Sect. 5.1.1.

»H @
FIGURE 5.20
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Example 5.6. Find the magnetic field a distance z above the center of a circular
loop of radius R, which carries a steady current / (Fig. 5.21).

FIGURE 5.21

Solution

The field dB attributable to the segment dl’ points as shown. As we integrate dl’
around the loop, dB sweeps out a cone. The horizontal components cancel, and
the vertical components combine, to give

Mo ar
B(z) = EI/ @—20059.

(Notice that dl' and 2 are perpendicular, in this case; the factor of cos 6 projects
out the vertical component.) Now, cos & and »* are constants, and [ d!’ is simply
the circumference, 27 R, so

I 0 I R?
= o (COS ) =t (5.41)

R

For surface and volume currents, the Biot-Savart law becomes

K / o 2 A
Br) = X0 / KOX2 1w and Bm= [IO X%, (54
47 22 47 22

respectively. You might be tempted to write down the corresponding formula for
a moving point charge, using the “dictionary” (Eq. 5.30):

o gV X &
B(r)=—
® 4 A2

, (5.43)
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but this is simply wrong.!! As I mentioned earlier, a point charge does not con-
stitute a steady current, and the Biot-Savart law, which only holds for steady cur-
rents, does not correctly determine its field.

The superposition principle applies to magnetic fields just as it does to electric
fields: if you have a collection of source currents, the net field is the (vector) sum
of the fields due to each of them taken separately.

Problem 5.8

(a) Find the magnetic field at the center of a square loop, which carries a steady
current /. Let R be the distance from center to side (Fig. 5.22).

(b) Find the field at the center of a regular n-sided polygon, carrying a steady cur-
rent /. Again, let R be the distance from the center to any side.

(c) Check that your formula reduces to the field at the center of a circular loop, in
the limit n — oo.

Problem 5.9 Find the magnetic field at point P for each of the steady current con-
figurations shown in Fig. 5.23.

FIGURE 5.22 FIGURE 5.23

Problem 5.10

(a) Find the force on a square loop placed as shown in Fig. 5.24(a), near an infinite
straight wire. Both the loop and the wire carry a steady current /.

(b) Find the force on the triangular loop in Fig. 5.24(b).

N

FIGURE 5.24

U7 say this loud and clear to emphasize the point of principle; actually, Eq. 5.43 is approximately
right for nonrelativistic charges (v < ¢), under conditions where retardation can be neglected (see
Ex. 10.4).
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Problem 5.11 Find the magnetic field at point P on the axis of a tightly wound
solenoid (helical coil) consisting of 7 turns per unit length wrapped around a cylin-
drical tube of radius a and carrying current / (Fig. 5.25). Express your answer in
terms of 6, and 6, (it’s easiest that way). Consider the turns to be essentially circu-
lar, and use the result of Ex. 5.6. What is the field on the axis of an infinite solenoid
(infinite in both directions)?

FIGURE 5.25

Problem 5.12 Use the result of Ex. 5.6 to calculate the magnetic field at the center
of a uniformly charged spherical shell, of radius R and total charge Q, spinning at
constant angular velocity .

Problem 5.13 Suppose you have two infinite straight line charges X, a distance d
apart, moving along at a constant speed v (Fig. 5.26). How great would v have to
be in order for the magnetic attraction to balance the electrical repulsion? Work out
the actual number. Is this a reasonable sort of speed?'?

A —v
[
A rd
—
FIGURE 5.26

5.3 @ THE DIVERGENCE AND CURL OF B

5.3.1 W Straight-Line Currents

The magnetic field of an infinite straight wire is shown in Fig. 5.27 (the current is
coming out of the page). At a glance, it is clear that this field has a nonzero curl
(something you’ll never see in an electrostatic field); let’s calculate it.

According to Eq. 5.38, the integral of B around a circular path of radius s,
centered at the wire, is

I I
?gB-dlz POl a1 = B2 b a1 = o1
21s 27

Notice that the answer is independent of s; that’s because B decreases at the same
rate as the circumference increases. In fact, it doesn’t have to be a circle; any old

121f you've studied special relativity, you may be tempted to look for complexities in this problem
that are not really there—A\ and v are both measured in the laboratory frame, and this is ordinary
electrostatics.
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B

FIGURE 5.27

loop that encloses the wire would give the same answer. For if we use cylindrical
coordinates (s, ¢, z), with the current flowing along the z axis, B = (uol/2ms)¢
anddl =dsS+sdo ¢ +dzz,so

I [1 I (7
fﬂdl:‘i Zsde =" | a4p = ol
2 s 2w Jo

This assumes the loop encircles the wire exactly once; if it went around twice,
then ¢ would run from O to 47, and if it didn’t enclose the wire at all, then ¢
would go from ¢, to ¢, and back again, with [ d¢ = 0 (Fig. 5.28).

Now suppose we have a bundle of straight wires. Each wire that passes through

our loop contributes o/, and those outside contribute nothing (Fig. 5.29). The
line integral will then be

7{ B.dl = ol (5.44)

where I, stands for the total current enclosed by the integration path. If the flow
of charge is represented by a volume current density J, the enclosed current is

Lene = /J -da, (5.45)

Loop

Wire
)}
[0

FIGURE 5.28 FIGURE 5.29
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with the integral taken over any surface bounded by the loop. Applying Stokes’
theorem to Eq. 5.44, then,

f(V xB)-da:MOfJ~da,
and hence
V x B = uol. (5.46)

With minimal labor, we have actually obtained the general formula for the curl
of B. But our derivation is seriously flawed by the restriction to infinite straight
line currents (and combinations thereof). Most current configurations cannot be
constructed out of infinite straight wires, and we have no right to assume that
Eq. 5.46 applies to them. So the next section is devoted to the formal derivation
of the divergence and curl of B, starting from the Biot-Savart law itself.

5.3.2 W The Divergence and Curl of B

The Biot-Savart law for the general case of a volume current reads

(5.47)

This formula gives the magnetic field at a point r = (x, y, z) in terms of an inte-
gral over the current distribution J(x', y’, z') (Fig. 5.30). It is best to be absolutely
explicit at this stage:

B is a function of (x, y, z),
J is a function of (x', y', 7'),
2=(x—xNX+ 0 -)y)¥+ @ -2
dt' =dx'dy' dz7.
The integration is over the primed coordinates; the divergence and the curl of B

are with respect to the unprimed coordinates.

® (x,y,2)

dat’
«,y,2)

FIGURE 5.30
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Applying the divergence to Eq. 5.47, we obtain:

v.e=2[v. (J x %) dr’. (5.48)
47 2
Invoking product rule number 6,
z 2 3
V-(Jx;):ﬁwaJ)—l(Vx%). (5.49)

But V x J =0, because J doesn’t depend on the unprimed variables, while
V x (£/2%) = 0 (Prob. 1.63), so

V.B=0. (5.50)

Evidently the divergence of the magnetic field is zero.
Applying the curl to Eq. 5.47, we obtain:

Ho A /

VxB=— [ Vx|Jx—=])dr. (5.51)
4 22

Again, our strategy is to expand the integrand, using the appropriate product

rule—in this case number 8:

% % %
Vx(JxE)=J<V~;>—(J~V);. (5.52)

(I have dropped terms involving derivatives of J, because J does not depend on
X, y,z.) The second term integrates to zero, as we’ll see in the next paragraph.
The first term involves the divergence we were at pains to calculate in Chapter 1
(Eq. 1.100):

£ 3
Vo (2) =48, (5.53)
L
Thus
V xB= Z—; /J(r/)4n83(r —r)dt = pJ(r),

which confirms that Eq. 5.46 is not restricted to straight-line currents, but holds
quite generally in magnetostatics.

To complete the argument, however, we must check that the second term in
Eq. 5.52 integrates to zero. Because the derivative acts only on £/2%, we can switch
from V to V' at the cost of a minus sign:'3

_(J.V)%z(J.V’)%, (5.54)
v v

3The point here is that 2 depends only on the difference between the coordinates; note that

(0/9x) f(x —x") = —(3/3x") f(x —x').
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The x component, in particular, is
o x =X , [ —x") x —x' ,
V() =V | 0| - (555 ) oD
2 2 2

(using product rule 5). Now, for steady currents the divergence of J is zero
(Eq. 5.33), so

[-a- V)fz]x =V [(x _xl)J} ,

23

and therefore this contribution to the integral (Eq. 5.51) can be written

/ v [(x Zx/)J] dt’ =y§ Cya (5.55)
v 2 s 7

(The reason for switching from V to V' was to permit this integration by parts.)
But what region are we integrating over? Well, it’s the volume that appears in
the Biot-Savart law (Eq. 5.47)—large enough, that is, to include all the current.
You can make it bigger than that, if you like; J = 0 out there anyway, so it will
add nothing to the integral. The essential point is that on the boundary the cur-
rent is zero (all current is safely inside) and hence the surface integral (Eq. 5.55)
vanishes.'*

5.3.3 @ Ampere’s Law

The equation for the curl of B,

V x B = 110J, (5.56)

is called Ampere’s law (in differential form). It can be converted to integral form
by the usual device of applying one of the fundamental theorems—in this case

Stokes’ theorem:
f(V xB)-da:%Bdl:uO/J-da.

Now, [ J-da is the total current passing through the surface (Fig. 5.31), which
we call .. (the current enclosed by the Amperian loop). Thus

FB-dl = polene. (5.57)

141f J itself extends to infinity (as in the case of an infinite straight wire), the surface integral is still
typically zero, though the analysis calls for greater care.
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Boundary line >

FIGURE 5.31

This is the integral version of Ampere’s law; it generalizes Eq. 5.44 to arbi-
trary steady currents. Notice that Eq. 5.57 inherits the sign ambiguity of Stokes’
theorem (Sect. 1.3.5): Which way around the loop am I supposed to go? And
which direction through the surface corresponds to a “positive” current? The res-
olution, as always, is the right-hand rule: If the fingers of your right hand indicate
the direction of integration around the boundary, then your thumb defines the
direction of a positive current.

Just as the Biot-Savart law plays a role in magnetostatics that Coulomb’s law
assumed in electrostatics, so Ampere’s plays the part of Gauss’s:

Electrostatics : ~ Coulomb —  Gauss,
Magnetostatics :  Biot—Savart —  Ampere.

In particular, for currents with appropriate symmetry, Ampere’s law in integral
form offers a lovely and extraordinarily efficient way of calculating the magnetic
field.

Example 5.7. Find the magnetic field a distance s from a long straight wire
(Fig. 5.32), carrying a steady current / (the same problem we solved in Ex. 5.5,
using the Biot-Savart law).

Solution

We know the direction of B is “circumferential,” circling around the wire as indi-
cated by the right-hand rule. By symmetry, the magnitude of B is constant around
an Amperian loop of radius s, centered on the wire. So Ampere’s law gives

%B'dlz B%dl: B2ws = polene = 1ol,
or

ol

B = .
21s

This is the same answer we got before (Eq. 5.38), but it was obtained this time
with far less effort.
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Amperian loop

Z
Sheet of current K
s b}
’ y
B 5 T Amperian loop
FIGURE 5.32 FIGURE 5.33

Example 5.8. Find the magnetic field of an infinite uniform surface current
K = K X, flowing over the xy plane (Fig. 5.33).

Solution
First of all, what is the direction of B? Could it have any x component? No: A
glance at the Biot-Savart law (Eq. 5.42) reveals that B is perpendicular to K.
Could it have a z component? No again. You could confirm this by noting that
any vertical contribution from a filament at +y is canceled by the corresponding
filament at —y. But there is a nicer argument: Suppose the field pointed away from
the plane. By reversing the direction of the current, I could make it point foward
the plane (in the Biot-Savart law, changing the sign of the current switches the sign
of the field). But the z component of B cannot possibly depend on the direction of
the current in the xy plane. (Think about it!) So B can only have a y component,
and a quick check with your right hand should convince you that it points to the
left above the plane and to the right below it.

With this in mind, we draw a rectangular Amperian loop as shown in Fig. 5.33,
parallel to the yz plane and extending an equal distance above and below the
surface. Applying Ampere’s law,

fB -dl = 2Bl = polene = 1K1,

(one Bl comes from the top segment and the other from the bottom), so B =
(no/2)K, or, more precisely,

B— { +(no/2)Ky for z <0,

—(no/2)K'y for z > 0. (5.58)

Notice that the field is independent of the distance from the plane, just like the
electric field of a uniform surface charge (Ex. 2.5).

Example 5.9. Find the magnetic field of a very long solenoid, consisting of n
closely wound turns per unit length on a cylinder of radius R, each carrying a
steady current / (Fig. 5.34). [The point of making the windings so close is that
one can then pretend each turn is circular. If this troubles you (after all, there is
a net current / in the direction of the solenoid’s axis, no matter how tight the
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FIGURE 5.34 FIGURE 5.35

winding), picture instead a sheet of aluminum foil wrapped around the cylin-
der, carrying the equivalent uniform surface current K = n/ (Fig. 5.35). Or make
a double winding, going up to one end and then—always in the same sense—
going back down again, thereby eliminating the net longitudinal current. But, in
truth, this is all unnecessary fastidiousness, for the field inside a solenoid is huge
(relatively speaking), and the field of the longitudinal current is at most a tiny
refinement. ]

Solution

First of all, what is the direction of B? Could it have a radial component? No. For
suppose B; were positive; if we reversed the direction of the current, B; would
then be negative. But switching [ is physically equivalent to turning the solenoid
upside down, and that certainly should not alter the radial field. How about a
“circumferential” component? No. For By would be constant around an Amperian
loop concentric with the solenoid (Fig. 5.36), and hence

5£B -dl = By(275) = jtolene = 0,

since the loop encloses no current.

So the magnetic field of an infinite, closely wound solenoid runs parallel to the
axis. From the right-hand rule, we expect that it points upward inside the solenoid
and downward outside. Moreover, it certainly approaches zero as you go very far

—.b 1
e 1
N @ : :
N ] | :

1
i |
1 1

Qs/,

Amperian loop

2 1
Amperian loops

FIGURE 5.36 FIGURE 5.37
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away. With this in mind, let’s apply Ampere’s law to the two rectangular loops in
Fig. 5.37. Loop 1 lies entirely outside the solenoid, with its sides at distances a
and b from the axis:

fB “dl = [Ba) — BB)IL = piolene = O,
SO
B(a) = B(b).

Evidently the field outside does not depend on the distance from the axis. But we
agreed that it goes to zero for large s. It must therefore be zero everywhere! (This
astonishing result can also be derived from the Biot-Savart law, of course, but it’s
much more difficult. See Prob. 5.46.)

As for loop 2, which is half inside and half outside, Ampere’s law gives

fB -dl = BL = polene = ponlL,

where B is the field inside the solenoid. (The right side of the loop contributes
nothing, since B = 0 out there.) Conclusion:

(5.59)

B uonl z, inside the solenoid,
B 0, outside the solenoid.

Notice that the field inside is uniform—it doesn’t depend on the distance from
the axis. In this sense the solenoid is to magnetostatics what the parallel-plate
capacitor is to electrostatics: a simple device for producing strong uniform
fields.

Like Gauss’s law, Ampere’s law is always true (for steady currents), but it is
not always useful. Only when the symmetry of the problem enables you to pull B
outside the integral ¢ B - dl can you calculate the magnetic field from Ampere’s
law. When it does work, it’s by far the fastest method; when it doesn’t, you have
to fall back on the Biot-Savart law. The current configurations that can be handled
by Ampere’s law are

1. Infinite straight lines (prototype: Ex. 5.7).
2. Infinite planes (prototype: Ex. 5.8).

3. Infinite solenoids (prototype: Ex. 5.9).

4. Toroids (prototype: Ex. 5.10).

The last of these is a surprising and elegant application of Ampere’s law. As in
Exs. 5.8 and 5.9, the hard part is figuring out the direction of the field (which we
will now have done, once and for all, for each of the four geometries); the actual
application of Ampere’s law takes only one line.



238

Chapter 5 Magnetostatics

Example 5.10. A toroidal coil consists of a circular ring, or “donut,” around
which a long wire is wrapped (Fig. 5.38). The winding is uniform and tight
enough so that each turn can be considered a plane closed loop. The cross-
sectional shape of the coil is immaterial. I made it rectangular in Fig. 5.38 for
the sake of simplicity, but it could just as well be circular or even some weird
asymmetrical form, as in Fig. 5.39, as long as the shape remains the same all the
way around the ring. In that case, it follows that the magnetic field of the toroid is
circumferential at all points, both inside and outside the coil.

FIGURE 5.38

Proof. According to the Biot-Savart law, the field at r due to the current element
atr’ is

_@Ixad,

dB =
4 23

We may as well put r in the xz plane (Fig. 5.39), so its Cartesian components are
(x, 0, z), while the source coordinates are

r = (s'cos¢’, s'sing’, 7).

FIGURE 5.39
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Then
2= (x —s'cosg’, —s'sing’, z — 7).
Since the current has no ¢ component, I = I;§ + I, Z, or (in Cartesian coordi-
nates)
I=(lcosg, I;sing’, I.).

Accordingly,

A A A

X y Z
Ixz= I, cos ¢’ I, sin ¢’ I,
(x —s'cos¢p’) (—s'sing’) (z—172)

= [sing’ (I;(z —2) +5'L)] X+ [L(x — s cos¢’) — I;cos¢'(z — 2] §

+ [~ Ixsing'] .

But there is a symmetrically situated current element at r”, with the same s’, the
same 2, the same dl’, the same I, and the same I, but negative ¢’ (Fig. 5.39).
Because sin¢’ changes sign, the X and z contributions from r’ and r” cancel,
leaving only a § term. Thus the field at r is in the y direction, and in general the
field points in the q; direction. ]

Now that we know the field is circumferential, determining its magnitude is
ridiculously easy. Just apply Ampere’s law to a circle of radius s about the axis of
the toroid:

B2ms = polenc,

and hence
NI A
Mo—qﬁ, for points inside the coil,
Brr)={ 27 (5.60)
0, for points outside the coil,

where N is the total number of turns.

Problem 5.14 A steady current / flows down a long cylindrical wire of radius a
(Fig. 5.40). Find the magnetic field, both inside and outside the wire, if

(a) The current is uniformly distributed over the outside surface of the wire.

(b) The current is distributed in such a way that J is proportional to s, the distance
from the axis.
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FIGURE 5.40 FIGURE 541

Problem 5.15 A thick slab extending from z = —a to z = +a (and infinite in the
x and y directions) carries a uniform volume current J = J X (Fig. 5.41). Find the
magnetic field, as a function of z, both inside and outside the slab.

Problem 5.16 Two long coaxial solenoids each carry current /, but in opposite
directions, as shown in Fig. 5.42. The inner solenoid (radius @) has n; turns per
unit length, and the outer one (radius b) has n,. Find B in each of the three regions:
(i) inside the inner solenoid, (ii) between them, and (iii) outside both.

B

FIGURE 5.42 FIGURE 5.43

Problem 5.17 A large parallel-plate capacitor with uniform surface charge o on the
upper plate and —o on the lower is moving with a constant speed v, as shown in
Fig. 5.43.

(a) Find the magnetic field between the plates and also above and below them.
(b) Find the magnetic force per unit area on the upper plate, including its direction.
(c) At what speed v would the magnetic force balance the electrical force?'

Problem 5.18 Show that the magnetic field of an infinite solenoid runs parallel to
the axis, regardless of the cross-sectional shape of the coil, as long as that shape
is constant along the length of the solenoid. What is the magnitude of the field,
inside and outside of such a coil? Show that the toroid field (Eq. 5.60) reduces to
the solenoid field, when the radius of the donut is so large that a segment can be
considered essentially straight.

Problem 5.19 In calculating the current enclosed by an Amperian loop, one must,
in general, evaluate an integral of the form

Lene = / J-da.
S

15See footnote to Prob. 5.13.
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The trouble is, there are infinitely many surfaces that share the same boundary line.
Which one are we supposed to use?

5.3.4 B Comparison of Magnetostatics and Electrostatics

The divergence and curl of the electrostatic field are

1
V-E=—p, (Gauss’s law);
€0

VXE=0, (no name).

These are Maxwell’s equations for electrostatics. Together with the boundary
condition E — 0 far from all charges,'6 Maxwell’s equations determine the field,
if the source charge density p is given; they contain essentially the same infor-
mation as Coulomb’s law plus the principle of superposition. The divergence and
curl of the magnetostatic field are

V-B=0, (no name);

V x B = puol, (Ampere’s law).

These are Maxwell’s equations for magnetostatics. Again, together with the
boundary condition B — 0 far from all currents, Maxwell’s equations determine
the magnetic field; they are equivalent to the Biot-Savart law (plus superposition).
Maxwell’s equations and the force law

F=Q0E+vxB)

constitute the most elegant formulation of electrostatics and magnetostatics.

The electric field diverges away from a (positive) charge; the magnetic field
line curls around a current (Fig. 5.44). Electric field lines originate on positive
charges and terminate on negative ones; magnetic field lines do not begin or end
anywhere—to do so would require a nonzero divergence. They typically form
closed loops or extend out to infinity.!” To put it another way, there are no point
sources for B, as there are for E; there exists no magnetic analog to electric
charge. This is the physical content of the statement V - B = 0. Coulomb and
others believed that magnetism was produced by magnetic charges (magnetic
monopoles, as we would now call them), and in some older books you will still
find references to a magnetic version of Coulomb’s law, giving the force of at-
traction or repulsion between them. It was Ampere who first speculated that all
magnetic effects are attributable to electric charges in motion (currents). As far

161 those artificial problems where the charge (or current) extends to infinity—infinite planes, for
example—symmetry considerations can sometimes take the place of boundary conditions.

17A third possibility turns out to be surprisingly common: they can form chaotic tangles. See
M. Lieberherr, Am. J. Phys. 78, 1117 (2010).



242

Chapter 5 Magnetostatics

; ;

(a) Electrostatic field (b) Magnetostatic field
of a point charge of a long wire

FIGURE 5.44

as we know, Ampere was right; nevertheless, it remains an open experimental
question whether magnetic monopoles exist in nature (they are obviously pretty
rare, or somebody would have found one'?), and in fact some recent elementary
particle theories require them. For our purposes, though, B is divergenceless, and
there are no magnetic monopoles. It takes a moving electric charge to produce a
magnetic field, and it takes another moving electric charge to “feel” a magnetic
field.

Typically, electric forces are enormously larger than magnetic ones. That’s not
something intrinsic to the theory; it has to do with the sizes of the fundamen-
tal constants €y and po. In general, it is only when both the source charges and
the test charge are moving at velocities comparable to the speed of light that the
magnetic force approaches the electric force in strength. (Problems 5.13 and 5.17
illustrate this rule.) How is it, then, that we notice magnetic effects at all? The
answer is that both in the production of a magnetic field (Biot-Savart) and in its
detection (Lorentz), it is the current that matters, and we can compensate for a
smallish velocity by pouring huge amounts of charge down the wire. Ordinarily,
this charge would simultaneously generate so large an electric force as to swamp
the magnetic one. But if we arrange to keep the wire neutral, by embedding in it
an equal quantity of opposite charge at rest, the electric field cancels out, leaving
the magnetic field to stand alone. It sounds very elaborate, but of course this is
precisely what happens in an ordinary current carrying wire.

Problem 5.20

(a) Find the density p of mobile charges in a piece of copper, assuming each atom
contributes one free electron. [Look up the necessary physical constants.]

(b) Calculate the average electron velocity in a copper wire 1 mm in diameter,
carrying a current of 1 A. [Note: This is literally a snail’s pace. How, then, can
you carry on a long distance telephone conversation?]

18 An apparent detection (B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982)) has never been reproduced—
and not for want of trying. For a delightful brief history of ideas about magnetism, see Chapter 1 in
D. C. Mattis, The Theory of Magnetism (New York: Harper & Row, 1965).
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(c) What is the force of attraction between two such wires, 1 cm apart?

(d) If you could somehow remove the stationary positive charges, what would the
electrical repulsion force be? How many times greater than the magnetic force
is it?

Problem 5.21 Is Ampere’s law consistent with the general rule (Eq. 1.46) that
divergence-of-curl is always zero? Show that Ampere’s law cannot be valid, in gen-
eral, outside magnetostatics. Is there any such “defect” in the other three Maxwell
equations?

Problem 5.22 Suppose there did exist magnetic monopoles. How would you mod-
ify Maxwell’s equations and the force law to accommodate them? If you think there
are several plausible options, list them, and suggest how you might decide experi-
mentally which one is right.




Overview Having shown in Chapter 5 that the magnetic force
must exist, we will now study the various properties of the mag-
netic field and show how it can be calculated for an arbitrary
(steady) current distribution. The Lorentz force gives the total force
on a charged particle as F = ¢E + gv x B. The results from the
previous chapter give us the form of the magnetic field due to a
long straight wire. This form leads to Ampeére’s law, which relates
the line integral of the magnetic field to the current enclosed by
the integration loop. It turns out that Ampére’s law holds for a wire
of any shape. When supplemented with a term involving chang-
ing electric fields, this law becomes one of Maxwell’s equations
(as we will see in Chapter 9). The sources of magnetic fields are
currents, in contrast with the sources of electric fields, which are
charges; there are no isolated magnetic charges, or monopoles.
This statement is another of Maxwell’s equations.

As in the electric case, the magnetic field can be obtained
from a potential, but it is now a vector potential; its curl gives the
magnetic field. The Biot—Savart law allows us to calculate (in prin-
ciple) the magnetic field due to any steady current distribution.
One distribution that comes up often is that of a solenoid (a coil
of wire), whose field is (essentially) constant inside and zero out-
side. This field is consistent with an Ampeére’s-law calculation of
the discontinuity of B across a sheet of current. By considering
various special cases, we derive the Lorentz transformations of
the electric and magnetic fields. The electric (or magnetic) field
in one frame depends on both the electric and magnetic fields in
another frame. The Hall effect arises from the gv x B part of the

The magnetic field
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Lorentz force. This effect allows us, for the first time, to determine
the sign of the charge carriers in a current.

6.1 Definition of the magnetic field

A charge that is moving parallel to a current of other charges experiences
a force perpendicular to its own velocity. We can see it happening in the
deflection of the electron beam in Fig. 5.3. We discovered in Section 5.9
that this is consistent with — indeed, is required by — Coulomb’s law
combined with charge invariance and special relativity. And we found
that a force perpendicular to the charged particle’s velocity also arises in
motion at right angles to the current-carrying wire. For a given current,
the magnitude of the force, which we calculated for the particular case
in Fig. 5.22(a), is proportional to the product of the particle’s charge ¢
and its speed v in our frame. Just as we defined the electric field E as the
vector force on unit charge at rest, so we can define another field B by
the velocity-dependent part of the force that acts on a charge in motion.
The defining relation was introduced at the beginning of Chapter 5. Let
us state it again more carefully.

At some instant 7 a particle of charge g passes the point (x, y, z) in our
frame, moving with velocity v. At that moment the force on the particle
(its rate of change of momentum) is F. The electric field at that time and
place is known to be E. Then the magnetic field at that time and place
is defined as the vector B that satisfies the following vector equation (for
any value of v):

F=q¢E+qgvxB 6.1)

This force F is called the Lorentz force. Of course, F here includes
only the charge-dependent force and not, for instance, the weight of the
particle carrying the charge. A vector B satisfying Eq. (6.1) always exists.
Given the values of E and B in some region, we can with Eq. (6.1) predict
the force on any particle moving through that region with any velocity.
For fields that vary in time and space, Eq. (6.1) is to be understood as
a local relation among the instantaneous values of F, E, v, and B. Of
course, all four of these quantities must be measured in the same inertial
frame.

In the case of our “test charge” in the lab frame of Fig. 5.22(a), the
electric field E was zero. With the charge ¢ moving in the positive x
direction, v = Xv, we found in Eq. (5.28) that the force on it was in the
negative y direction, with magnitude Iqv /27 egre?:

I
F=—j—0"

. 6.2
2megre? 6.2
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In this case the magnetic field must be

1
B=72——— 6.3
2megre? ©.3)
for then Eq. (6.1) becomes
FoqvxB=Gx2@) () =—§—L (64
=qgvxB=&x2)(qv =— , .
q a4 2 egre? y27reorc2

in agreement with Eq. (6.2).

The relation of B to r and to the current / is shown in Fig. 6.1.
Three mutually perpendicular directions are involved: the direction of
B at the point of interest, the direction of a vector r from the wire to
that point, and the direction of current flow in the wire. Here ques-
tions of handedness arise for the first time in our study. Having adopted
Eq. (6.1) as the definition of B and agreed on the conventional rule for
the vector product, that is, X x § = Z, etc., in coordinates like those
of Fig. 6.1, we have determined the direction of B. That relation has a

The magnetic field of a current in a long straight
wire and the force on a charged particle moving
through that field.
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Figure 6.2.
A reminder. The helix in (a) is called a
right-handed helix, that in (b) a left-handed helix.

handedness, as you can see by imagining a particle that moves along
the wire in the direction of the current while circling around the wire in
the direction of B. Its trail, no matter how you look at it, would form a
right-hand helix, like that in Fig. 6.2(a), not a left-hand helix like that
in Fig. 6.2(b).

From the F = gv x B relation, we see that another set of three
(not necessarily mutually perpendicular) vectors consists of the force F
on the charge ¢, the velocity v of the charge, and the magnetic field B
at the location of the charge. In Fig. 6.1, v happens to point along the
direction of the wire, and F along the direction of r, but these need not
be the directions in general; F will always be perpendicular to both v and
B, but v can point in any direction of your choosing, so it need not be
perpendicular to B.

Consider an experiment like Oersted’s, as pictured in Fig. 5.2(a).
The direction of the current was settled when the wire was connected
to the battery. Which way the compass needle points can be stated if we
color one end of the needle and call it the head of the arrow. By tradition,
long antedating Oersted, the “north-seeking” end of the needle is so des-
ignated, and that is the black end of the needle in Fig. 5.2(a)." If you com-
pare that picture with Fig. 6.1, you will see that we have defined B so that
it points in the direction of “local magnetic north.” Or, to put it another
way, the current arrow and the compass needle in Fig. 5.2(a) define a
right-handed helix (see Fig. 6.2), as do the current direction and the vec-
tor B in Fig. 6.1. This is not to say that there is anything intrinsically
right-handed about electromagnetism. It is only the self-consistency of
our rules and definitions that concerns us here. Let us note, however, that
a question of handedness could never arise in electrostatics. In this sense
the vector B differs in character from the vector E. In the same way,
a vector representing an angular velocity, in mechanics, differs from a
vector representing a linear velocity.

The SI units of B can be determined from Eq. (6.1). In a magnetic
field of unit strength, a charge of one coulomb moving with a velocity of
one meter/second perpendicular to the field experiences a force of one
newton. The unit of B so defined is called the tesla:

newton newton
1tesla=1

= . (6.5)
coulomb - meter/second amp - meter

In terms of other units, 1 tesla equals 1 kg C~'s~!. In SI units, the rela-
tion between field and current in Eq. (6.3) is commonly written as

i
B =% (6.6)
2r

' We now know that the earth’s magnetic field has reversed many times in geologic
history. See Problem 7.19 and the reference there given.
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where B is in teslas, I is in amps, and r is in meters. The constant g,
like the constant €y we met in electrostatics, is a fundamental constant in
the ST unit system. Its value is defined to be exactly

- kem
1o = 47 - 10 7% 6.7)

Of course, if Eq. (6.0) is to agree with Eq. (6.3), we must have

1 , 1
"= (6.8)
HO€O

Mo = ——>
€0c?

With €y given in Eq. (1.3), and ¢ = 2.998 - 108 m/s, you can quickly
check that this relation does indeed hold.

REMARK: Given that we already found the B field due to a current-carrying
wire in Eq. (6.3), you might wonder what the point is of rewriting B in terms of
the newly introduced constant 11 in Eq. (6.6). The answer is that 11( is a prod-
uct of the historical development of magnetism, which should be contrasted with
the special-relativistic development we followed in Chapter 5. The connection
between electric and magnetic effects was certainly observed long before the for-
mulation of special relativity in 1905. In particular, as we learned in Section 5.1,
Oersted discovered in 1820 that a current-carrying wire produces a magnetic
field. And 1o was eventually introduced as the constant of proportionality in
Eq. (6.6). (Or, more accurately, 1 was assigned a given value, and then Eq. (6.6)
was used to define the unit of current.) But even with the observed connection
between electricity and magnetism, in the mid nineteenth century there was no
obvious relation between the 14 in the expression for B and the €() in the expres-
sion for E. They were two separate constants in two separate theories. But two
developments changed this.

First, in 1861 Maxwell wrote down his set of equations that govern all
of electromagnetism. He then used these equations to show that electromag-
netic waves exist and travel with speed 1/,/ipeg ~ 3- 108 m/s. (We'll study
Maxwell’s equations and electromagnetic waves in Chapter 9.) This strongly sug-
gested that light is an electromagnetic wave, a fact that was demonstrated exper-
imentally by Hertz in 1888. Therefore, ¢ = 1/,/1o€g, and hence pg = 1 /606‘2,
This line of reasoning shows that the speed of light ¢ is determined by the two
constants € and .

The second development was Einstein’s formulation of the special theory
of relativity in 1905. Relativity was the basis of our reasoning in Chapter 5 (the
main ingredients of which were length contraction and the relativistic velocity-
addition formula), which led to the expression for the magnetic field in Eq. (6.3).
A comparison of this equation with the historical expression in Eq. (6.6) yields
o =1 /60(32, This line of reasoning shows that p( is determined by the two
constants € and c. Of course, having proceeded the way we did in Chapter 5,
there is no need to introduce the constant () in Eq. (6.6) when we already have
Eq. (6.3). Nevertheless, the convention in SI units is to write B in the form given
in Eq. (6.6). If you wish, you can think of p simply as a convenient shorthand
for the more cumbersome expression 1/ 60(,‘2.

Comparing the previous two paragraphs, it is unclear which derivation of
o =1 /60c2 is “better.” Is it preferable to take €p and pq as the fundamental
constants and then derive, with Maxwell’s help, the value of ¢, or to take €; and
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¢ as the fundamental constants and derive, with Einstein’s help, the value of pq?
The former derivation has the advantage of explaining why ¢ takes on the value
2.998 - 108 m/s, while the latter has the advantage of explaining how magnetic
forces arise from electric forces. In the end, it’s a matter of opinion, based on
what information you want to start with.

In Gaussian units, Eq. (6.1) takes the slightly different form
F=qE+ v xB. 6.9)
c

Note that B now has the same dimensions as E, the factor v/c being
dimensionless. With force F' in dynes and charge ¢ in esu, the unit of
magnetic field strength is the dyne/esu. This unit has a name, the gauss.
There is no special name for the unit dyne/esu when it is used as a unit of
electric field strength. It is the same as 1 statvolt/cm, which is the term
normally used for unit electric field strength in the Gaussian system. In
Gaussian units, the equation analogous to Eq. (6.3) is

B=71—. (6.10)
If you repeat the reasoning of Chapter 5, you will see that this B is

obtained basically by replacing €g by 1/4 and erasing one of the factors
of ¢ in Eq. (6.3). B is in gauss if  is in esu/s, r is in cm, and ¢ is in cm/s.

Example (Relation between 1 tesla and 1 gauss) Show that 1 tesla is
equivalent to exactly 10* gauss.

Solution Consider a setup where a charge of 1 C travels at 1 m/s in a direction
perpendicular to a magnetic field with strength 1 tesla. Equations (6.1) and (6.5)
tell us that the charge experiences a force of 1 newton. Let us express this fact in
terms of the Gaussian force relation in Eq. (6.9). We know that I N = 10 dyne
and 1C = 3-10% esu (this “3” isn’t actually a 3; see the discussion below). If
we let 1tesla = n gauss, with n to be determined, then the way that Eq. (6.9)
describes the given situation is as follows:

3-10% esu

107 dyne = ——————
v 3-1010¢cm/s

(100 %) (n gauss). 6.11)

Since 1 gauss equals 1 dyne/esu, all the units cancel, and we end up withn = 10%,
as desired.

Now, the two 3’s in Eq. (6.11) are actually 2.998’s. This is clear in the
denominator because the 3 comes from the factor of ¢. To see why it is the case
in the numerator, recall the example in Section 1.4 where we showed that 1 C =
3-10% esu. If you redo that example and keep things in terms of the constant k
given in Eqgs. (1.2) and (1.3), you will find that the number 3 - 107 is actually
V10% (ignoring the units of k). But in view of the definition of 11( in Eq. (6.7),
the k = 1/4me( expression in Eq. (1.3) can be written as k = 1/(107[L()E()). And
we know from above that 1/ugeg = 2, hence k = 1077 ¢2 (ignoring the units).
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So the number 3 - 10 is really v/10% = v/102¢2 = 10c (ignoring the units), or
2.998 - 10°. Since both of the 3’s in Eq. (6.11) are modified in the same way, the
n = 10% result is therefore still exact.

Let us use Egs. (6.1) and (6.6) to calculate the magnetic force bet-
ween parallel wires carrying current. Let r be the distance between the
wires, and let /1 and I, be the currents which we assume are flowing in
the same direction, as shown in Fig. 6.3. The wires are assumed to be
infinitely long — a fair assumption in a practical case if they are very long
compared with the distance r between them. We want to predict the force
that acts on some finite length / of one of the wires, due to the entirety of
the other wire. The current in wire 1 causes a magnetic field of strength

_ ol
2y

0 (6.12)
at the location of wire 2. Within wire 2 there are n, moving charges per
meter length of wire, each with charge ¢» and speed v,. They constitute
the current I»:

L =nyqovo. (6.13)

According to Eq. (6.1), the force on each charge is qzszl.z The
force on each meter length of wire is therefore nyg>v2 By, or simply 1> Bj.
The force on a length [ of wire 2 is then

F = 1Bl (6.14)

Using the B from Eq. (6.12), this becomes

Il
F o ol

6.15
2rr ( )

Here F is in newtons, and /1 and /> are in amps. As the factor //r that
appears both in Eq. (6.15) and below in Eq. (6.16) is dimensionless, / and
r could be in any units.’

2 By is the field inside wire 2, caused by the current in wire 1. When we study magnetic
fields inside matter in Chapter 11, we will find that most conductors, including copper
and aluminum, but not including iron, have very little influence on a magnetic field.
For the present, let us agree to avoid things like iron and other ferromagnetic materials.
Then we can safely assume that the magnetic field inside the wire is practically what it
would be in vacuum with the same currents flowing.

Equation (6.15) has usually been regarded as the primary definition of the ampere in
the SI system, p( being assigned the value 47 - 10~7. That is to say, one ampere is the
current that, flowing in each of two infinitely long parallel wires a distance r apart, will
cause a force of exactly 2 - 107 newton on a length [ = r of one of the wires. The
other SI electrical units are then defined in terms of the ampere. Thus a coulomb is one
ampere-second, a volt is one joule/coulomb, and an ohm is one volt/ampere.

I -
/////
—///
=
I
_ 2r ==
== r. B ==

Figure 6.3.

Current I} produces magnetic field B at
conductor 2. The force on a length [ of
conductor 2 is given by Eq. (6.15).
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The same exercise carried out in Gaussian units, with Eqgs. (6.9) and
(6.10), will lead to
_ 2011

F==2 (6.16)
cr

Equation (6.15) is symmetric in the labels 1 and 2, so the force on
an equal length of wire 1 caused by the field of wire 2 must be given by
the same formula. We have not bothered to keep track of signs because
we know already that currents in the same direction attract one another.

More generally, we can calculate the force on a small piece of current-
carrying wire that sits in a magnetic field B. Let the length of the small
piece be dI, the linear charge density of the moving charges be A, and the
speed of these charges be v. Then the amount of moving charge in the piece
isdq = A dl, and the currentis / = Av (in agreement with Eq. (6.13) since
A = ng). Equation (6.1) tells us that the magnetic force on the piece is

dF =dgv xB = (d)(wW) x B= (Av)(dlV) x B

— | dF=1dlxB 6.17)

The vector dl gives both the magnitude and direction of the small piece.
The F = LBl result in Eq. (6.14) is a special case of this result.

Example (Copper wire) Let’s apply Egs. (6.13) and (6.15) to the pair of
wires in Fig. 6.4(a). They are copper wires 1 mm in diameter and 5 cm apart. In
copper the number of conduction electrons per cubic meter, already mentioned
in Chapter 4, is 8.45- 1028, so the number of electrons per unit length of wire
isn= (ﬂ/4)(1073 m)2(8.45 1028 m73) =6.6-102m 1. Suppose their mean
drift velocity v is 0.3cm/s = 0.003 m/s. (Of course their random speeds are
vastly greater.) The current in each wire is then

I =ngv = (6.6-10*>m~1)(1.6- 10712 €)(0.003 m/s) ~ 32 C/s.

The attractive force on a 20 cm length of wire is

oIl (4m 1077 kgm/C?)(32C/s)?(0.2m)

~8-107*N. (6.18
2nr 27(0.05 m) (6.18)

F
This result of 8-10~% N is not an enormous force, but it is easily measurable.
Figure 6.4(b) shows how the force on a given length of conductor could be
observed.

Recall that the 110 in Eq. (6.18) can alternatively be written as 1/eoc?.
The ¢? in the denominator reminds us that, as we discovered in Chapter 5,
the magnetic force is a relativistic effect, strictly proportional to v?/c?
and traceable to a Lorentz contraction. And with the v in the above exam-
ple less than the speed of a healthy ant, it is causing a quite respectable
force! The explanation is the immense amount of negative charge the
conduction electrons represent, charge that ordinarily is so precisely neu-
tralized by positive charge that we hardly notice it. To appreciate that,
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consider the force with which our wires in Fig. 6.4 would repel one
another if the charge of the 6.6 - 10> electrons per meter were not neu-
tralized at all. As an exercise you can show that the force is just ¢?/v?
times the force we calculated above, or roughly 4 x 10'3 tons per meter
of wire. So full of electricity is all matter! If all the electrons in just one
raindrop were removed from the earth, the whole earth’s potential would
rise by several million volts.

Matter in bulk, from raindrops to planets, is almost exactly neutral.
You will find that any piece of it much larger than a molecule contains
nearly the same number of electrons as protons. If it didn’t, the resulting
electric field would be so strong that the excess charge would be irre-
sistibly blown away. That would happen to electrons in our copper wire
even if the excess of negative charge were no more than 10710 of the
total. A magnetic field, on the other hand, cannot destroy itself in this
way. No matter how strong it may be, it exerts no force on a stationary
charge. That is why forces that arise from the motion of electric charges
can dominate the scene. The second term on the right in Eq. (6.1) can be
much larger than the first. Thanks to that second term, an electric motor

Figure 6.4.

(a) The current in each copper wire is 32 amps,
and the force F on the 20 cm length of
conductor is 8- 10~ newtons. (b) One way to
measure the force on a length of conductor. The
section BCDE swings like a pendulum below the
conducting pivots. The force on the length CD
due to the field of the straight conductor GH is
the only force deflecting the pendulum from the
vertical.



286

The magnetic field

can start your car. In the atomic domain, however, where the coulomb
force between pairs of charged particles comes into play, magnetic forces
do take second place relative to electrical forces. They are weaker, gener-
ally speaking, by just the factor we should expect, the square of the ratio
of the particle speed to the speed of light.

Inside atoms we find magnetic fields as large as 10 tesla (or 10°
gauss). The strongest large-scale fields easily produced in the labora-
tory are on that order of magnitude too, although fields up to several
hundred tesla have been created for short times. In ordinary electrical
machinery, electric motors for instance, 1 tesla (or 10* gauss) would be
more typical.* Magnetic resonance imaging (MRI) machines also oper-
ate on the order of 1 tesla. A magnet on your refrigerator might have a
field of around 10 gauss. The strength of the earth’s magnetic field is a
few tenths of a gauss at the earth’s surface, and presumably many times
stronger down in the earth’s metallic core where the currents that cause
the field are flowing. We see a spectacular display of magnetic fields on
and around the sun. A sunspot is an eruption of magnetic field with local
intensity of a few thousand gauss. Some other stars have stronger mag-
netic fields. Strongest of all is the magnetic field at the surface of a neu-
tron star, or pulsar, where in some cases the intensity is believed to reach
the hardly conceivable range of 10!” tesla. On a vaster scale, our galaxy
is pervaded by magnetic fields that extend over thousands of light years
of interstellar space. The field strength can be deduced from observations
in radioastronomy. It is a few microgauss — enough to make the magnetic
field a significant factor in the dynamics of the interstellar medium.

6.2 Some properties of the magnetic field

The magnetic field, like the electric field, is a device for describing how
charged particles interact with one another. If we say that the magnetic
field at the point (4.5, 3.2, 6.0) at 12:00 noon points horizontally in the
negative y direction and has a magnitude of 5 gauss, we are making a
statement about the acceleration a moving charged particle at that point
in space-time would exhibit. The remarkable thing is that a statement of
this form, giving simply a vector quantity B, says all there is to say. With
it one can predict uniquely the velocity-dependent part of the force on
any charged particle moving with any velocity. It makes unnecessary any
further description of the other charged particles that are the sources of

4 Nikola Tesla (1856-1943), the inventor and electrical engineer for whom the ST unit
was named, invented the alternating-current induction motor and other useful
electromagnetic devices. Gauss’s work in magnetism was concerned mainly with the
earth’s magnetic field. Perhaps this will help you to remember which is the larger unit.
For small magnetic fields, it is generally more convenient to work with gauss than with
tesla, even though the gauss technically isn’t part of the SI system of units. This
shouldn’t cause any confusion; you can quickly convert to tesla by dividing by
(exactly) 104, 1f you’re wary about leaving the familiar ground of SI units, feel free to
think of a gauss as a deci-milli-tesla.
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the field. In other words, if two quite different systems of moving charges
happen to produce the same E and B at a particular point, the behavior
of any test particle at the point would be exactly the same in the two
systems. It is for this reason that the concept of field, as an intermediary
in the interaction of particles, is useful. And it is for this reason that we
think of the field as an independent entity.

Is the field more, or less, real than the particles whose interaction, as
seen from our present point of view, it was invented to describe? That is
a deep question which we would do well to set aside for the time being.
People to whom the electric and magnetic fields were vividly real — Fara-
day and Maxwell, to name two — were led thereby to new insights and
great discoveries. Let’s view the magnetic field as concretely as they did
and learn some of its properties.

So far we have studied only the magnetic field of a straight wire
or filament of steady current. The field direction, we found, is every-
where perpendicular to the plane containing the filament and the point
where the field is observed. The magnitude of the field is proportional
to 1/r. The field lines are circles surrounding the filament, as shown in
Fig. 6.5. The sense of direction of B is determined by our previously
adopted convention about the vector cross-product, by the (arbitrary)
decision to write the second term in Eq. (6.1) as gv x B, and by the
physical fact that a positive charge moving in the direction of a posi-
tive current is attracted to it rather than repelled. These are all consis-
tent if we relate the direction of B to the direction of the current that
is its source in the manner shown in Fig. 6.5. Looking in the direction
of positive current, we see the B lines curling clockwise. Or you may
prefer to remember it as a right-hand-thread relation. Point your right
thumb in the direction of the current and your fingers will curl in the
direction of B.

Let’s look at the line integral of B around a closed path in this field.
(Remember that a similar inquiry in the case of the electric field of a
point charge led us to a simple and fundamental property of all electro-
static fields, that [ E - ds = 0 around a closed path, or equivalently that
curlE = 0.) Consider first the path ABCD in Fig. 6.6(a). This lies in a
plane perpendicular to the wire; in fact, we need only work in this plane,
for B has no component parallel to the wire. The line integral of B around
the path shown is zero, for the following reason. Paths BC and DA are
perpendicular to B and contribute nothing. Along AB, B is stronger in the
ratio ro /1 than it is along CD; but CD is longer than AB by the same fac-
tor, for these two arcs subtend the same angle at the wire. So the two arcs
give equal and opposite contributions, and the whole integral is zero.

It follows that the line integral is also zero on any path that can be
constructed out of radial segments and arcs, such as the path in
Fig. 6.6(b). From this it is a short step to conclude that the line inte-
gral is zero around any path that does not enclose the wire. To smooth
out the corners we would only need to show that the integral around a

Figure 6.5.
Magnetic field lines around a straight wire
carrying current.
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D little triangular path vanishes. The same step was involved in the case of
c the electric field.
A A path that does not enclose the wire is one like the path in Fig. 6.6(c),
t r, B which, if it were made of string, could be pulled free. The line integral

(a) Path lying in plane
perpendicular to wire

(b) Path constructed of
radial segments and arcs

(c) Path that does not
enclose the wire

(d) Circular path
enclosing wire

(e) Crooked path
enclosing wire

(f) Circular and
crooked path not
enclosing wire

(g) Loop of N turns
enclosing wire

around any such path is zero.

Now consider a circular path that encloses the wire, as in Fig. 6.6(d).
Here the circumference is 27 r, and the field is pol /27 r and everywhere
parallel to the path, so the value of the line integral around this par-
ticular path is (2wr)(uol/27r), or uol. We now claim that any path
looping once around the wire must give the same value. Consider, for
instance, the crooked path C in Fig. 6.6(e). Let us construct the path C’'
in Fig. 6.6(f) made of a path like C and a circular path, but not enclos-
ing the wire. The line integral around C’ must be zero, and therefore
the integral around C must be the negative of the integral around the
circle, which we have already evaluated as po/ in magnitude. The sign
will depend in an obvious way on the sense of traversal of the path. Our
general conclusion is:

/ B - ds = po x (current enclosed by path) (Ampere’s law).

(6.19)

This is known as Ampeére’s law. It is valid for steady currents. In the
Gaussian analog of this expression, the (g is replaced with 47 /c, which
quickly follows from a comparison of Eqs. (6.6) and (6.10).

Equation (6.19) holds when the path loops the current filament once.
Obviously a path that loops it N times, like the one in Fig. 6.6(g), will
just give N times as big a result for the line integral.

The magnetic field, as we have emphasized before, depends only
on the rate of charge transport, the number of units of charge passing
a given point in the circuit, per second. Figure 6.7 shows a circuit with
a current of 5 milliamperes. The average velocity of the charge carriers
ranges from 107% m/s in one part of the circuit to 0.8 times the speed of
light in another. The line integral of B over a closed path has the same
value around every part of this circuit, namely

C o k
/B~ds=u01= 4. 10-7 KM 0.005 = ) =6.3-10°" ~em
C? Cs
(6.20)

You can check that these units are the same as tesla-meter, which they
must be, in view of the left-hand side of this equation.

Figure 6.6.
The line integral of the magnetic field B over any closed path depends
only on the current enclosed.
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right at 3.5 cm/s; positive ions
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What we have proved for the case of a long straight filament of
current clearly holds, by superposition, for the field of any system of
straight filaments. In Fig. 6.8 several wires are carrying currents in dif-
ferent directions. If Eq. (6.19) holds for the magnetic field of one of these
wires, it must hold for the total field, which is the vector sum, at every
point, of the fields of the individual wires. That is a pretty complicated
field. Nevertheless, we can predict the value of the line integral of B
around the closed path in Fig. 6.8 merely by noting which currents the
path encircles, and in which sense.

Example (Magnetic field due to a thick wire) We know that the mag-
netic field outside an infinitesimally thin wire points in the tangential direction
and has magnitude B = pof/2mr. But what about a thick wire? Let the wire
have radius R and carry current / with uniform current density; the wire may
be viewed as the superposition of a large number of thin wires running parallel
to each other. Find the field both outside and inside the wire.

Solution  Consider an Amperian loop (in the spirit of a Gaussian surface) that
takes the form of a circle with radius r around the wire. Due to the cylindri-
cal symmetry, B has the same magnitude at all points on this loop. Also, B is

Figure 6.7.

The line integral of B has precisely the same
value around every part of this circuit, although
the velocity of the charge carriers is quite
different in different parts.
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Figure 6.8.

A superposition of straight current filaments.
The line integral of B around the closed path, in
the direction indicated by the arrowhead, is
equal to po(—Iy + Is).

tangential; it has no radial component, due to the symmetric nature of the thin
wires being superposed. So the line integral [ B-ds equals B(27rr). Ampere’s law
then quickly gives B = pgl/2mr. We see that, outside a thick wire, the wire can
be treated like a thin wire lying along the axis, as far as the magnetic field is con-
cerned. This is the same result that holds for the electric field of a charged wire.

Now consider a point inside the wire. Since area is proportional to 12, the
current contained within a radius r inside the wire is I, = [ (r2 /R2). Ampere’s
law then gives the magnitude of the (tangential) field at radius r as

uoUr’/R?)  polr

2nrB = uol, =— B = =
Hoir 2r 27 R?

(r<R). (6.21)

We have been dealing with long straight wires. However, we want
to understand the magnetic field of any sort of current distribution — for
example, that of a current flowing in a closed loop, a circular ring of cur-
rent, to take the simplest case. Perhaps we can derive this field too from
the fields of the individual moving charge carriers, properly transformed.
A ring of current could be a set of electrons moving at constant speed
around a circular path. But here that strategy fails us. The trouble is that
an electron moving on a circular path is an accelerated charge, whereas
the magnetic fields we have rigorously derived are those of charges mov-
ing with constant velocity. We shall therefore abandon our program of
derivation at this point and state the remarkably simple fact: these more
general fields obey exactly the same law, Eq. (6.19). The line integral of
B around a bent wire is equal to that around a long straight wire carrying
the same current. As this goes beyond anything we have so far deduced,
we must look on it here as a postulate confirmed by the experimental
tests of its implications.

You may find it unsettling that the validity of Ampere’s law applied
to an arbitrarily shaped wire simply has to be accepted, given that we
have derived everything up to this point. However, this distinction bet-
ween acceptance and derivation is illusory. As we will see in Chapter 9,
Ampere’s law is a special case of one of Maxwell’s equations. There-
fore, accepting Ampere’s law is equivalent to accepting one of Maxwell’s
equations. And considering that Maxwell’s equations govern all of elec-
tromagnetism (being consistent with countless experimental tests),
accepting them is certainly a reasonable thing to do. Likewise, all of
our derivations thus far in this book (in particular, the ones in Chapter 5)
can be traced back to Coulomb’s law, which is equivalent to Gauss’s
law, which in turn is equivalent to another one of Maxwell’s equations.
Therefore, accepting Coulomb’s law is equivalent to accepting this other
Maxwell equation. In short, everything boils down to Maxwell’s equa-
tions sooner or later. Coulomb’s law is no more fundamental than
Ampere’s law. We accepted the former long ago, so we shouldn’t be
unsettled about accepting the latter now.

To state Ampere’s law in the most general way, we must talk about
volume distributions of current. A general steady current distribution is
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described by a current density J(x, y, z) that varies from place to place but
is constant in time. A current in a wire is merely a special case in which
J has a large value within the wire but is zero elsewhere. We discussed
volume distributions of current in Chapter 4, where we noted that, for
time-independent currents, J has to satisfy the continuity equation, or
conservation-of-charge condition,

div] =0. (6.22)

Take any closed curve C in a region where currents are flowing. The
total current enclosed by C is the flux of J through the surface spanning
C, that is, the surface integral f s J - da over this surface S (see Fig. 6.9).
A general statement of the relation in Eq. (6.19) is therefore

f&ﬁ:wfym. (6.23)
C S

Let us compare this with Stokes’ theorem, which we developed in
Chapter 2:

/E@:/mﬂym. (6.24)
C S

We see that a statement equivalent to Eq. (6.23) is this:

curl B = polJ (6.25)

This is the differential form of Ampere’s law, and it is the simplest and
most general statement of the relation between the magnetic field and
the moving charges that are its source. As with Eq. (6.19), the Gaussian
analog of this expression has the o replaced by 4 /c. Note that the
form of J in Eq. (6.25) guarantees that Eq. (6.22) is satisfied, because
the divergence of the curl is always zero (see Exercise 2.78).

Example (Curl of B for a thick wire) For the above “thick wire” example,
verify that curl B = n¢J both inside and outside the wire.

Solution  We can use the expression for the curl in cylindrical coordinates given
in Eq. (F.2) in Appendix F. The only nonzero derivative in the expression is
d(rAg)/dr, so outside the wire we have
.1 9(rB .10 I
curl B=12- (rBo) LA My 0,
r or ror \ 2mr
which is correct because there is zero current density outside the wire. For the
present purposes, the only relevant fact about the external field is that it is
proportional to 1/r.
Inside the wire we have

(6.26)

B .10(rBy) .10 wolr . 1 @) J
curlB=2-—~=z2——(r =7U)— = 7J) = ,
ror ror \ 27R2? 1o TR? Ko 1o
(6.27)

as desired.

Figure 6.9.

J is the local current density. The surface
integral of J over S is the current enclosed by the
curve C.
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Figure 6.10.
There is zero net flux of B out of either box.

Equation (6.25) by itself is not enough to determine B(x, y, z), given
J(x,y,7), because many different vector fields could have the same curl.
We need to complete it with another condition. We had better think about
the divergence of B. Going back to the magnetic field of a single straight
wire, we observe that the divergence of that field is zero. You can’t draw
a little box anywhere, even one enclosing the wire, that will have a net
outward or inward flux. It is enough to note that the boxes V; and V> in
Fig. 6.10 have no net flux and can shrink to zero without developing any.
(The 1/r dependence of B isn’t important here. All that matters is that B
points in the tangential direction and that its magnitude is independent of
6.) For this field then, div B = 0, and hence also for all superpositions of
such fields. Again we postulate that the principle can be extended to the
field of any distribution of currents, so that a companion to Eq. (6.22) is
the condition

divB =0 (6.28)

You can quickly check that this relation holds for the wire in the above
example, both inside and outside, by using the cylindrical-coordinate
expression for the divergence given in Eq. (F.2) in Appendix F; the only
nonzero component of B is By, but 9B /06 = 0.

We are concerned with fields whose sources lie within some finite
region. We won’t consider sources that are infinitely remote and infinitely
strong. Under these conditions, B goes to zero at infinity. With this pro-
viso, we have the following theorem.

Theorem 6.1 Assuming that B vanishes at infinity, Egs. (6.25) and
(6.28) together determine B uniquely if J is given.

Proof Suppose both equations are satisfied by two different fields B
and B,. Then their difference, the vector field D = B; — B», is a field
with zero divergence and zero curl everywhere. What could it be like?
Having zero curl, it must be the gradient’ of some potential function
f(x,y,2), thatis, D = Vf. But V.- D = 0, too, so V - Vf or V3f = 0
everywhere. Over a sufficiently remote enclosing boundary, f must take
on some constant value fj, because B; and B> (and hence D) are essen-
tially zero very far away from the sources. Since f satisfies Laplace’s
equation everywhere inside that boundary, it cannot have a maximum or
a minimum anywhere in that region (see Section 2.12), and so it must
have the value f everywhere. Hence D = Vf = 0, and B; = B». O]

The fact that a vector field is uniquely determined by its curl and
divergence (assuming that it goes to zero at infinity) is known as the

5 This follows from our work in Chapter 2. If curl D = 0, then the line integral of D
around any closed path is zero. This implies that we can uniquely define a potential
function f as the line integral of D from an arbitrary reference point. It then follows
that D is the gradient of f.
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Helmholtz theorem. We proved this theorem in the special case where
the divergence is zero.

In the case of the electrostatic field, the counterparts of Egs. (6.25)
and (6.28) were

curlE = 0 and dvE="2 (6.29)
€0

In the case of the electric field, however, we could begin with Coulomb’s
law, which expressed directly the contribution of each charge to the elec-
tric field at any point. Here we shall have to work our way back to some
relation of that type.® We shall do so by means of a potential function.
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